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Abstract

This paper presents an overview of discrete element modelling (DEM) as a modelling technique for
granular assemblies. It focusses on DEM for agricultural products and processes and discusses important
algorithmic and physical issues connected to this domain. Existing applications in the literature are
reviewed and an overview of ongoing DEM applications in the Laboratory for Agro-Machinery and
Processing is presented.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Granular materials abound in nature, in industry and particularly in the agro-industry, where
nearly every harvested product goes through one or more granular stages during the handling
chain from harvest to consumer. Granular matter is generally thought of as a simple and
unsophisticated form of matter, being just an assembly of discrete macroscopic grains. However,
this is a gross misconception which is probably due to the ubiquitous nature of granular materials.
Already during early childhood, while playing with sand, we learn about the different properties
of dry (flow) and wet sand (stability, arching) and how shaking a sieve brings the bigger sea shells
to the surface (segregation). Engineers dealing with bulk handling systems realize very well that
granular materials are extremely difficult to handle with respect to flow and mixing [1–13].
Estimates are that about 40% of the capacity of industrial plants are wasted because of bulk
handling problems [14,15]. In the agro-industry many problems are related to product damage
due to impact or vibration during processes like harvesting, transport in palloxes, sorting, bulk
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storage, etc. e.g., bruising of apples is reported as a serious quality threat [16]. The annual
production of apple in Belgium is about 512 000 tonnes, of which about one-sixth is unsuitable for
sale due to bruising. Subcutaneous tissue discoloration in potatoe tubers is also caused by impact
(static and dynamic) and is reported be responsible for losses up to 20% [17,18]. Softer products,
like tomatoes, suffer from puncture due to impact by the harder stem. Losses amount to 10%.
During the last decade granular materials have drawn interest, not only to engineers [8,10,19]

trying to solve practical problems, but also to physicists, realizing that granular matter pose
numerous interesting questions of fundamental nature [8,10,13,20–22] and to researchers in the
scientific computing concerned with modelling granular systems [23–30]. Solving practical
problems in real life requires expert knowledge in each of these domains.
The paper is organized as follows. In Section 2 the physical and mathematical setting of DEM is

explained and the basic DEM algorithm is given. The subsequent Sections 3–6 discuss the
respective components of this algorithm in some detail stressing some issues of particular
importance when dealing with agricultural products. Section 7 reviews reported applications in
agriculture and discusses current DEM projects in the Laboratory for Agro-Machinery and
Processing. Finally, some conclusions are drawn.

2. Discrete element modelling

Discrete element modelling was originally pioneered by Cundall and Strack [31] and Cundall
[32] in the field of rock mechanics. DEM is essentially a numerical technique to model the motion
of an assembly of particles interacting with each other through collisions. As such it is quite
comparable to molecular dynamics (MD) [33], from which it borrows some techniques and
experience. Both techniques sum up the forces acting on the particles and integrate Newton’s
equations of motion to obtain velocity and position at the next time step. In doing so, the
technique describes the path of every particle in the assembly as time proceeds. Notable
differences with molecular dynamics are the fact that in DEM the particles are not point masses as
in MD, but necessarily have a finite extent in 2 or 3 dimensions. This implies the possibility of
rotational degrees of freedom. Also the nature of the forces acting on the particles is different. In
the first place, contrary to interaction forces in MD, contact forces in granular systems are not
conservative due to the inelastic nature of collisions and the presence of friction forces on contact
surfaces. As a consequence, energy and momentum are dissipated, i.e., transferred to internal
degrees of freedom of the particles. Furthermore, interaction forces between atoms and molecules
are determined by continuous long-range and/or short-range potentials, whereas in granular
systems both the contact force and its gradient may show discontinuities depending on the contact
force model that is applied. Finally, as contact forces act only on particles in mutual contact, a
contact detection algorithm is required in DEM programs, something which is absent in MD
programs.
Physically, particles in a DEM problem are approximated as rigid bodies and the contacts

between them as point contacts. In reality, most particles are of course more or less deformable,
and this is accounted for by allowing the particles to overlap slightly. As overlapping particles can
of course only exist in a computer model, this overlap is termed virtual overlap, dn: The forces
resulting from a contact between two particles are related to their virtual overlap by a contact
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force model. Mathematically, a DEM problem is formulated as a non-linear system of coupled
ordinary differential equations (ODE) formed by Newton’s equations of motion for each
individual particle:

miai ¼ Gi þ
X

c

Fci;

Iiai ¼ Hi þ
X

c

rci � Fci; i ¼ 1;y;N: ð1Þ

Here, ai and ai are the translational and rotational acceleration of the ith particle and mi and Ii

designate its mass and inertia tensor. Gi and Hi are, respectively, the body force and moment
acting on the ith particle. Most frequently, one has

Gi ¼

0

0

�mig

2
64

3
75; Hi ¼

0

0

0

2
64

3
75: ð2Þ

In addition the particle experiences contact forces Fci arising from contacts with neighbouring
particles which is the contact force acting on the particle due to the cth contact and rci ¼ rc � ri is
the position vector of that contact relative to the particle’s center of mass. The ODEs in system (1)
are coupled because the contact force Fci depends on the relative position and velocity of the
particles in contact with particle i: Non-linearities arise because contact forces act only between
particles in contact. Even in the simplest case of a normal contact force modelled by a linear
spring

Fci ¼ kxc; xcX0 ð3Þ

(k is the spring constant and xc the virtual overlap of contact c) the problem becomes non-linear
because in the case of dry contacts Fci has to vanish for xo0: A more correct statement of the
contact law (3) would therefore be

Fci ¼ maxð0; kxcÞ; dncAR: ð4Þ

The contact non-linearity is illustrated in Fig. 1. A similar non-linearity arises in the case of dry
friction. According to Coulomb’s law of dry friction, a normal force implies a tangential friction
force:

FfricpmsFn ðstaticÞ; ð5Þ

Ffric ¼ mdFn ðdynamicÞ: ð6Þ

The p sign in Eq. (6) means that for the case of static friction (vanishing tangential velocity, ’xt),
Ffric compensates exactly the (unknown) external tangential force Fext

t applied to the contact, so
that ’xt ¼ 0 is maintained. If Fext

t > msFn; the dynamic regime is entered, and Eq. (6) applies. Note
that Eqs. (5) and (6) describe only the magnitude of the friction force Ffric: Its sign is given by

sgnðFfricÞ ¼ �sgnðFext
t Þ: ð7Þ

The situation is depicted graphically in Fig. 2. Finally, nonlinearities may arise because the
contact force model itself is non-linear. For example the Hertz contact law dictates that the
contact force between two spherical elastic bodies is proportional to the 3=2th power of the virtual
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overlap (see Fig. 1).

Fic ¼ kx3=2c : ð8Þ

The typical DEM algorithm is then organized as follows:

1. Initialize the system. Since the ODE system (1) is a system of second-order differential
equations, two initial conditions are required for every degree of freedom, i.e., for every
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Fig. 1. The contact nonlinearity for a normal contact force modeled by a linear spring (3) and by the Hertz law

(arbitrary units).

Fig. 2. Dry friction nonlinearity: friction force Ffric according to Eqs. (5) and (6) as a function of the external tangential

force, Fext
t ; applied to the contact for a fixed normal force, Fn (arbitrary units).
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particle the translational and rotational position and velocity at time t ¼ 0 must be fixed. Also
the time step (Dt) is initialized.

2. Determine all contacts in the system at the current time. This usually proceeds in two steps:
2.1. Spatial sorting: in principle, every particle may be in contact with every other particle, so

the size of the set of all possible contacts is NðN � 1Þ=2 ¼ OðN2Þ: Spatial sorting
constructs a set of possible contacts which is smaller than NðN � 1Þ=2; by including only
particle pairs which cannot be falsified immediately. The ultimate goal is to obtain a set
with a size OðNÞ:

2.2. Spatial resolution applies a decisive test to every element of the set of possible contacts
after spatial sorting. Its outcome is the set of actual contacts.

Spatial sorting is necessary to make the contact detection step run in OðNÞ time rather than
OðN2Þ:

3. Compute the contact forces for every actual contact.
4. Assemble the forces and moments acting on each individual particle in Newton’s equations of

motion (1).
5. Integrate Newton’s equations of motion (1) over the time step Dt to obtain updated positions

and velocities, and advance the time: t ¼ t þ Dt:
6. If the simulation is not finished, restart at step 2.

The algorithm contains several non-trivial steps, most of which depend on the method used to
describe the shape of the particles. This will be considered first.

3. Shape representation and spatial resolution

Geometric model particles are defined by describing their surface. A detailed taxonomy of
geometric models has been presented by Lin and Gottschalk [34]. Most frequently used are
implicit surfaces, parametric surfaces and polygonal models.
An implicit surface is defined by a mapping f from space to the real numbers f : Rd-R as the

set of points of space x for which f ðxÞ ¼ 0: In the context of granular systems particles are usually
closed manifolds, i.e., they have a well-defined inside and outside (walls or machine parts may
constitute exceptions to this). Implicit surfaces automatically satisfy this requirement.
Spheres, described by

f ðx; y; zÞ ¼ x2 þ y2 þ z2 � r2 ¼ 0; ð9Þ

are typical and most attractive examples because the contact between pairs of spheres can be
easily verified as

dn � ðri þ rjÞ � jjxi � xj jj > 0: ð10Þ

Here xi is the position of the centre of the ith sphere, and ri its radius. The quantity dn is called the
virtual overlap and is intimately connected to analytical contact force models (see Section 5).
The hyper-quadric surface is a generalization of the sphere which is also often used in DEM:

x

a

� 	m

þ
y

b

� 	n

þ
z

c

� 	p

�1 ¼ 0: ð11Þ
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The larger the powers, the sharper the edges of the particle become, and the larger a (resp. b; c),
the larger the particle becomes in the x direction (resp. y; z). Spatial resolution algorithms have
been devised for general curved surfaces [35] and for hyper-quadric surfaces in particular [27]. The
test is based on the solution of a non-linear algebraic system with real solutions if the surfaces
intersect, and complex solutions otherwise. Obviously, spatial resolution is far more expensive
than for spheres.
Surfaces can also be represented parametrically. Parametric surfaces are defined by a mapping

from some subset of the plane to space f : Rd�1-Rd : Unlike implicit surfaces they do not
generally define closed manifolds. Typical examples are surfaces represented by non-uniform
rational B-splines (NURBs) [36] or Bezier patches [37]. Contact tests proceed as described for
hyper-quadric surfaces.
Finally, a particle’s surface can be represented as a set of connected polygons, typically

triangles. Such polygonal models are very versatile and widely used in computer graphics and
modelling, but their non-smooth nature makes them somewhat less attractive for discrete contact
force models. The intersection of a pair of polygons however can be easily verified. Let nk be the
normal of the kth polygon Pk and pnk

ðPlÞ be the orthogonal projection of polygon Pl onto nk:
Then both polygons intersect iff

pnk
ðPlÞCpnk

ðPkÞ ð12Þ

and

pnl
ðPkÞCpnl

ðPlÞ: ð13Þ

If either one of these conditions is false the polygons are disjoint, and the other condition may be
skipped. Note that pnk

ðPkÞ is just a single point, as nk>Pk:Hence, as soon as the projection of two
vertices of Pl lie on either side of this point, the test yields true and the remaining vertices of P1

need not to be tested. Although the contact test for a pair of polygons is cheap, it should be
realized that 3D particles can consist of quite large numbers of polygons. Checking the
intersection of a pair of polygonal particles by checking all possible polygon pairs is not a realistic
option. Some pruning mechanism is needed. For example, one can try to cut down the cost of
spatial resolution by postponing the execution of a decisive test, and running some cheap tests
which can further restrict the number of possible contacts in order to reduce the number of
decisive tests. Various algorithms of this sort have been devised by the computer graphics and
computational geometry community. Most of them share the fact that the particles are built up
hierarchically as a tree. Each node in the tree stands for a subset of the particle, and has a
bounding volume associated with it. Cheap intersection tests on these bounding volumes must
allow one to prune the tree quickly to decide whether a decisive test is necessary or not. This
principle is most commonly used for polygonal particles but can also be applied for implicit or
parametric surfaces. Typical examples of bounding volumes are spheres, axis-aligned bounding
box (AABBs), oriented bounding box (OBBs), k-dops (discrete oriented polytopes), spherical
shells (for details see Refs. [38–40]). Note that the pruning of the tree is in fact a spatial sorting
problem on a lower level, where the bounding volumes play the role of the particles.
Consequently, some of the principles of the following section are reapplied.
It should be clear by now that, except for spheres, contact tests are expensive. This provided a

rationale for composing particles of general shape as a rigid collection of overlapping spheres.
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This idea has been worked out in detail by Favier et al. [41], Kremmer and Favier [42] and
Abbaspour et al. [43] for axisymmetric particles. A comparison with other methods capable of
representing general shapes is however still lacking.

4. Contact detection

Contact detection, or collision detection as it is called in computer graphics and computational
geometry research, is a two-step process. The two steps are also known as spatial sorting and
spatial resolution, respectively [23]. During spatial sorting the set of theoretically possible contacts
is restricted. Next, spatial resolution subjects the restricted set of possible contacts to a decisive
test. The exact form of this test depends on the shape representation of the particles participating
in the possible contact (see Section 3). Thus, the cost of contact detection can be analyzed as the
cost of spatial sorting plus the product of the size of this set and the cost of the spatial resolution
test.
Several contact detection algorithms have been described in literature either related to DEM

[24,30,44,45] or computer graphics and computational geometry research [34,46–51]. A most
trivial contact detection algorithm is not to restrict the set of theoretically possible contacts at all,
and simply subject every distinct pair of particles to the contact test. This results in N2ðN � 1Þ
contact tests. Its quadratic complexity in the number of particles N identifies it as a very inefficient
algorithm. Nevertheless, it can be useful for validating new contact detection algorithms, or in
cases where the number of particles is small and the cost of the simulation is determined by
components other than contact detection.

Spatial decomposition techniques rely on dividing the space occupied by the particles, so that
one needs to check for contact between pairs of particles that are in the same or nearby cells of the
decomposition. Two algorithms widely used in DEM do this decomposition by overlying the
problem domain with a regular grid of cubic cells [52,53]. In the grid search algorithm [30,54,55]
the size of a cell is determined so that every cell can accommodate at most one particle, i.e., the cell
size is given by

ffiffiffi
2

p
ðRmin � eÞ; where Rmin is the radius of the smallest particle and e is the

maximum overlap that can occur. The set of possible contacts then contains only pairs of particles
in cells no further apart than 2Rmax: This reduces the complexity to OðNRd

max=Rd
minÞ; where d is the

dimension of the problem space. In the linked list algorithm [30,56,57] a cell size of 2Rmax is taken,
so that particle pairs in contact can only reside in the same cell or in neighbouring cells. Here, the
complexity is OðN½ð2RmaxÞ

dr
2Þ; with r the average particle density. The name of the algorithm is
taken from the fact that a linked list is a very convenient data structure for remembering the
particles residing in a particular cell. A deficiency of both algorithms is that, when the grid is
implemented as an array, they may waste too much storage when the particle density becomes
zero in large parts of the problem domain. This can be overcome by implementing the grid as a
hash table. Vankreveld et al. [58] have shown that storage requirements are then independent of
the size of the problem domain and of order OðNÞ: Point location queries can be performed in
constant time. The grid search algorithm and the linked list algorithm both yield an optimal
complexity of order OðNÞ; provided that the particles in the simulation are roughly uniform in
size. Performance quickly degrades as the assembly’s scale factor Rmax=Rmin becomes larger than
unity, or as the number of particles per cell ð2RmaxÞ

dr becomes larger than unity. The presence of
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a few large particles in the assembly can cause a dramatic performance deterioration. This is a
major shortcoming.
Iwai et al. [30] report several variants of the linked list and grid search methods which remedy

the performance degradation due do the presence of particles of different size. They noticed that
the search radius can be allowed to vary as a function of the particle for which candidate particles
are sought. In particular it is sufficient to search for candidate particles within a radius 2ri of the
ith particle. A small particle will of course fail to detect the contact with a larger particle,
but it will be detected by the larger particle. By allowing the search radius to depend on the
radii of both particles ri þ rj the performance can be improved even further. This can be
achieved by introducing different grids of increasing cell size (layers) and putting the larger
particles in the larger grids. In order to save memory space the different layers are implemented as
hash tables.
The Octree method [59,60] is a spatial decomposition techniques that also avoids storing empty

cells, and can deal with assemblies in which the ratio Rmax=Rmin departs seriously from unity. It
derives from a binary search and sort. Constructing and searching the Octree can be done in
OðNlogNÞ provided it is balanced. Maintaining the balance throughout the simulation is,
however, not easily accomplished.
Contact detection algorithms have been designed based on algorithms which are in general

expensive, i.e., not of OðNÞ; but which become efficient for the special case presented by contact
detection due to spatial and temporal coherence, a term used to indicate that the configuration of
the particles undergoes only minor changes from time step to time step [51].
Ferrez et al. [26] and M .uller [61] describe a gridless contact detection algorithm based on

dynamic triangulation. A Delaunay triangulation is constructed with the centres of the particles as
vertices. Although the construction of a Delaunay triangulation is in general a time consuming
procedure, maintaining the triangulation over the time steps of the simulation can be done
efficiently due to spatial and temporal coherence. The technique has no problems with large scale
factors, but is restricted to spheres or 2D polygons.

Spatial heapsort is a gridless algorithm that relies on sorting the particles according to their co-
ordinates on d global axes with the heapsort sorting algorithm. Only pairs of particles whose
projections overlap on all axes are candidates for a contact test. It has been reported to be
superior to Octree methods [23,24]. Heapsort [62] as a general sorting algorithm is OðN logNÞ for
unsorted lists but the required changes at every time step are small due spatial and temporal
coherence.

5. Contact force models

Contact forces are typically decomposed into normal and tangential components, with respect
to the contact surface. For simplicity, the discussion is restricted to spherical particles in three
dimensions. Sch.afer et al. [63] present an overview of contact force model in physics.
The normal direction pointing from the contact surface to particle i is given by

nij ¼ ðxi � xjÞ=jxi � xj j ð14Þ
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and the tangential direction by

sij ¼ vij=jvij j; ð15Þ

where vij is the relative surface velocity:

vij ¼ vi � vj � ½ðvi � vjÞ � nij
nij þ rci � Xi � rcj � Xj: ð16Þ

Here, vi ¼ ’xi is the translational velocity of particle i; Xi ¼ ’yi its angular velocity, and rci is the
vector from the centre of gravity of particle i to the contact point c: For spherical particles one has

ric � rc � ri ¼ �Rinij ;

rcj � rc � rj ¼ Rjnij: ð17Þ

Here, Ri is the radius of particle i: It should be noted that the angular velocities Xi and Xj also
have a component in the normal direction which causes the two particles to spin around the
normal direction with velocity:

ðXi � XjÞ � nij : ð18Þ

Contact forces originating from this component are usually ignored.

5.1. Normal contact forces

The normal component of the contact force acting on particle i is generally described as a
function of the virtual overlap, xij ;

dnij ¼ Ri þ Rj � jxi � xj j ð19Þ

and its time derivative, ’x;

Fin ¼ Finðxij ; ’xijÞnij : ð20Þ

By Newton’s third law

Fjn ¼ �Fin: ð21Þ

The simplest model assumes a linear elastic component and a linear viscous damping:

Fnðx; ’xÞ ¼ knxþ gn
’x: ð22Þ

Linear viscous damping leads to a normal contact force with a discontinuity at x ¼ 0 where the
force jumps from 0 to a finite value in an infinitely short time interval. The model is interesting
because it has an analytic solution [64].
It has been shown [65–67], however, that for viscoelastic materials a non-linear model can be

derived:

Fnðx; ’xÞ ¼ *knx
3=2 þ *gnx

1=2 ’x; ð23Þ

where the elastic constant *kn and the damping constant *gn depend on Young’s moduli, the Poisson
ratios and bulk viscosities of the particles material, as well as on their masses and radii. The x1=2

factor in the damping term makes the discontinuity at x ¼ 0 disappear. Eq. (23), incorporates the
special case of Hertz’ contact law for purely elastic bodies, by setting the bulk viscosities of the
particle’s material to zero. It should be noted that Eq. (23) represents the analytic solution of
simplified problem. The most important underlying assumptions are that the particles are
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spherical and homogenous, deformations are small:

x=Rp0:01; ð24Þ

and the collision is head on, i.e., the particles approach each other along a line joining their centres
of mass, and without rotation. During an oblique collision the normal component of the contact
force can in principle deviate from Eq. (23) because of non-homogenous stress distributions at the
contact surface. For agricultural products these assumptions are not always fullfilled. For
example tomatoes are quite soft, allowing for larger deformation, and also not homogenous. For
such systems little or no theoretical knowledge is available to build contact force models. An
attempt to deal with large deformations has been reported by Raji and Favier [68].

5.2. Tangential contact forces

Tangential contact forces arise when two particles take part in an oblique collision or when the
particles are rotating. The simplest tangential contact force model accounts for Coulomb friction
only (see Eqs. (5) and (6)):

Ft ¼ �mjFnjs: ð25Þ

Note that Eq. (25) is discontinuous at jvj ¼ 0; which leads to Ft jumping between positive and
negative values rather than Fr ¼ 0: This can be avoided by adding a viscous term

Ft ¼ �minðgt’z;mjFnjÞs: ð26Þ

Here,

zðtÞ ¼
Z t

t0

vtðt0ÞHðmd jFnj � ktjzjÞdt0 ð27Þ

plays a similar role as the virtual overlap x in normal contact force models. It is the displacement
in the tangential direction that took place since the time t0; when the contact was first established.
Note that the Heaviside function

HðxÞ ¼
0 if xo0;

1 if xX0

(
ð28Þ

takes care of keeping z constant in the regime of dynamic friction [69]. The friction factor m in
Eq. (26) switches back and forth between ms and md whenever the border between static and
dynamic friction regimes is crossed.
As for normal impact, realistically behaving tangential contact force models also require elastic

terms:

Ft ¼ �minðktzþ gt’z;mjFnjÞs: ð29Þ

Under the assumption of constant normal force Mindlin and Deresiewicz [70] were able to derive
analytical results for purely elastic bodies. Their results where used by Walton and Braun [71] to
derive an additive scheme for the elastic contribution of the tangential contact force:

dFt ¼ ktjdzj; ð30Þ
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where, for any quantity q

dq � qðtÞ � qðt � dtÞ:

The tangential spring constant in Eq. (30) is given by

kt ¼
k0
t 1�

Ft � F�
t

mFn � F�
t

� �1=3

if nt in initial direction;

k0
t 1�

F�
t � Ft

mFn � F�
t

� �1=3

if nt in opposite direction;

8>>>><
>>>>:

k0
t ¼ kn

1� n
1� n=2

; ð31Þ

where n is Poisson’s ration for the particle’s material. The quantity F�
t is initially equal to 0 and set

to the current value of Ft whenever nt reverses direction. The change in the normal force that
inevitably occurs during impact is accounted for by using the instantaneous value of Fn in
evaluating kt in Eq. (31).

6. Time integration

A numerical scheme for time integration is needed in order to solve the ODE system (1)
numerically. To the knowledge of the authors very little systematic research has been done on
numerical integration of DEM problems, mainly because numerical errors are considered less
important than the approximate nature of the contact force models. For many DEM simulations,
the reported integration time step is very often chosen to produce between 10 and 20 time steps
over the timespan of a typical collision, often with low order integration schemes. However,
Sch.afer et al. [63] recommend 100 time steps and higher order integration schemes for accurate
results. A comparative study of time integration algorithms for molecular dynamics has been
published by Rodger [72].
Basic time marching methods are described by Ascher and Petzold [73], Golub and Ortega [74]

and Lambert [75]. Implicit methods as well as adaptive multi-step methods are usually not
considered in DEM because the improvement in accuracy comes at an excessively high cost
caused by multiple contact detection phases per time step.
The forward Euler scheme

vtþDt ¼ vt þ atDt;

xtþDt ¼ xt þ vtDt ð32Þ

is only first order accurate, but simple to implement.
Many time integration schemes are borrowed from molecular dynamics [33,57], e.g. the Verlet

scheme [76]:

xtþ1 ¼ 2xt � xt�1 þ Dt2at; ð33Þ

which is fourth order accurate. Unfortunately, it does not generate velocities directly. This is
problematic in contact force models with damping since then the contact force depends on the
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velocities of the colliding particles. Velocities can be provided as

vt ¼
xt � xt�Dt

Dt
; ð34Þ

which is only first-order accurate. Note that a central difference scheme

vt ¼
xtþDt � xt�Dt

2Dt
ð35Þ

is not satisfactory as it makes the method implicit. In contact force models with damping the
accelerations at ¼ Ftðxt; vtÞ=m depends on the velocities vt and consequently, according to
Eq. (35), also on the positions xtþDt: This implies that contact detection needs to be executed more
than once per time step, which is computationally too expensive. The velocity Verlet scheme

xtþDt ¼ xt þ vtDt þ at

Dt2

2
;

vtþDt ¼ vt þ Dt
ðat þ atþDtÞ

2
; ð36Þ

does generate velocities but again becomes implicit in the case of contact force models with
damping because of the appearance of the acceleration at the next time step, atþDt: which is
dependent on the velocity at the next time step, vtþDt: Here, however, vtþDt can be determined
iteratively without doing contact detection at every iteration as the positions, xtþDt; depend on the
acceleration at the current time step, at; only, and not on the acceleration at the next time step,
atþDt: Another popular time integration method in MD is the leap-frog scheme:

vtþDt=2 ¼ vt�Dt=2 þ atDt;

xtþDt ¼ xt þ vtþDt=2Dt: ð37Þ

Here, velocities are only generated in the middle of the time steps, so that vi must be extrapolated
from vt�iDt=2 i ¼ 1; 2;y : Beeman’s algorithm [77] is fourth order accurate in x and third order
accurate in v and has been reported to be particularly good at energy conservation in MD:

xtþDt ¼ xt þ vtDt þ
Dt2

6
ð4at � at�DtÞ;

vtþDt ¼ vt þ
Dt

6
ðatþDt þ 5at � at�DtÞ: ð38Þ

Again in the case of contact force models with damping the appearance of atþDt requires
iterative determination of vtþDt: Finally, also predictor-corrector methods have been used [57,63].
A problem that is most often simply ignored, is the fact that commonly used contact force

models, based on linear damping (see Eq. (22)), are in fact discontinuous. Since the impact
velocity is non-zero, the contact force jumps from 0 to a finite value in an infinitely small time,
which is not only unphysical, but poses special problems to numerical solution methods [73].
Ideally, systems with discontinuous right hand sides require the discontinuity to be located so that
a mesh point can be placed close to it. In the DEM problem this would require that the beginning
of every contact be located in time. As there may be numerous contacts beginning and ending all
the time, this is computationally very expensive. An alternative strategy is to use very small time
steps near the discontinuities, which is of course also computationally expensive.
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7. DEM applications in agriculture

Computer simulations of real problems have always been attractive because they provide a
means of investigating model systems in order to gain understanding, and to conduct ‘‘computer’’
experiments in cases where experimental systems are hard to probe. This especially the case for
granular systems where experiments with non-ideal materials are extremely hard to probe and a
general theory is not available.
In this section a review of—still scarce—DEM applications for agricultural purposes is

presented. Applications related to silo research is explicitly excluded, as this is already a well
developed area, with many applications in other engineering disciplines. For recent results the
reader is referred to Hirschfeld and Rapaport [78], de Silva [79], Holst et al. [80,81], Rotter et al.
[82] Lu et al. [83], Negi et al. [84,85] and Rong et al. [86,87]. This overview is organized rather
arbitrarily by distinguishing two different application domains: soft granular systems and hard
granular systems. Soft granular systems of biological products are usually systems of fruits or
tubers, like potatoes, tomatoes, apples, etc. with a rather small number of particles, but complex
shapes. The main issue in the investigation of these systems is related to contact mechanics during
collisions with other fruits or machine parts during harvesting and post-harvest treatment and its
effect on material failure, such as bruising (e.g. potato, apple, pear, etc.) and puncturing (e.g.
tomato). The aim is to design machines and process with a low risk of damaging the product. A
lot of experimental work has been carried out to assess the mechanical behaviour of fruit upon
impact and the related failure behaviour using pendulums [88–97,18].
These efforts have resulted in reliable techniques for measuring normal impact forces as a

function of strain and strain rate during impact. However, little data are available on the
measurement of tangential contact forces. Yet, it is suspected that e.g., during the harvesting of
potatoes impacts with large tangential forces are an important source of bruise. A typical
behaviour of a mealy apple upon mechanical impact by a spherical aluminium impactor of a
pendulum is shown in Figs. 3 and 4. Note that the contact force returns to zero at a finite
displacement, i.e., the contact ends before the apple surface has relaxed. Since the displacement
rate is finite this implies that the relaxation is still going on but its rate is slower than the velocity
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Fig. 3. Typical behaviour of a mealy apple impacted with a pendulum. The velocity at impact is 1:09 m=s which

corresponds approximately with an initial angle of the pendulum of 25 (all units in S.I.). From left to right:

displacement u of the impactor relative to the initial impact point, the displacement rate ’u; and the force Fc exerted by

the impacted object, i.c. the apple, on the impactor, as functions of time t:
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of the recoiling impactor (the displacement and displacement rate are inferred from the angular
velocity of the impactor).
Fig. 5 shows a simulated impact using the Brilliantov model for the normal contact force,

Eq. (23). Note the vertical slope of the contact force versus displacement curve at zero
displacement which is not present in the experimental curve (Fig. 3). This singularity is caused by
the presence of the x1=2 factor in the damping term. Clearly, the apple is violating some of the
assumptions of the Brilliantov model. Most probably, the mealy apple tissue is not an ideal visco-
elastic solid, but it is also possible that the assumption of small deformation is violated. This
illustrates clearly that, even for normal impacts, there is a lack of theoretical knowledge on
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Fig. 4. Experimental contact force as a function of the trajectory in phase space ðu; ’uÞ and its different projections.

Upper left: contact force as a function of the trajectory in phase space ðu; ’uÞ (time proceeds in clockwise orientation).

Lower left: phase space trajectory (time proceeds in clockwise orientation). Upper right: force vs. displacement rate

(time proceeds in counter-clockwise orientation). Lower right: force vs. displacement (time proceeds in clockwise
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contact force models for biological materials and more research is needed to link mechanical
properties of biological materials to contact force models. Replacing the x1=2 factor in the
damping term by x gives a better qualitative agreement, as shown in Fig. 6. Now the slope at zero
displacement is finite as experimentally observed. Contact force models like this can be fitted to
experiments and used in DEM simulations to predict the bruise level in a particular harvester or
post-harvest treatment. Typical examples are presented by Favier et al. [41] and Kremmer and
Favier [42].
An entirely different case is the work of Schembri and Harris [98] who used DEM to describe

the failure behaviour of sugar cane under compressive forces. Here, contact forces are taken to be
cohesive bonds between cells. If the tensile forces between cells exceed the failure criterion the cells
debond and the sugar cane splits.
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Hard granular systems of biological products usually consist of smaller particles and deal with
flow or compaction problems. Technical difficulties, here, are mainly related to the large number
of particles and adequate representation of irregular shapes without blowing up the contact
detection phase. Here the approximation of bodies by overlapping spheres [41–43] has proven
very useful. Typical problems treated are grains on a hopper [42], segregation of rice grains in a
shaking tray [99], gravity flow of rice grains [100–102] and the prediction of bulk compression
parameters of a compressed oil-seed bed [103]. Recently, DEM has been used to investigate the
collective behaviour of mineral fertiliser grains in centrifugal fertiliser spreaders [88,104,105]. The
ultimate goals of that study is to understand the interaction of fertiliser grains on the spreader
disk, find out about the near-optimal fertiliser material properties, which guarantee a satisfactory
spreading pattern, and to optimise the design of the spreader. Fig. 7 shows the simulated
trajectory of a package of 144 spherical grains on a conical disk.

8. Conclusions

The numerical simulation of granular systems of biological products is a complex task that
requires DEM techniques at the limit of what is technically possible today. They show irregular
shapes, not necessarily convex. They exhibit material properties that often differ from ideal solids
like viscoelastic materials and are hard to assess. There is biological variability of mechanical
properties among different specimens of the product, but also within a single specimen. Failure
properties of the material (like bruise or puncturing) are often essential. 3D simulations are
required. Yet, interesting applications are emerging, providing interesting insights into the
mechanical behaviour of biological products and helping to design better tools for material
handling. It should be clear from the discussion that quite a number of issues are yet to be
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resolved before DEM can become interesting on an industrial scale. Efficient computational
methods are needed for representing irregular forms. Basic research is required to enlighten the
link from the mechanical and micro-mechanical properties of biological products to contact force
models. Finally, as DEM covers a wide range of applications with different numbers of particles,
different particle shapes, differing contact physics simulations a computational framework for
developing is needed for efficiently building new DEM applications. Current software systems
very often have a very restricted application range. An attempt to cope with this problem is the
DEMeter++ project [106]. DEMeter++ is a C++ class library in development that is to be
used as an extensible toolkit for efficient development of high performance DEM applications
using state of the art algorithms and scientific programming techniques. The central idea is a
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Fig. 7. Simulation of the trajectory of 144 particles falling on a spinning conical disk with two vanes. Above: Top view

of the trajectory of the particles. Below: side view. The motion of the vanes on the disk is not shown.
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building brick approach in which all the components, like shape representation, contact forces,
spatial sorting, spatial resolution, time integration, etc. in the basic DEM algorithm become
separate objects which can be easily interchanged and extended or replaced by user-defined
objects.
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